A bifurcation theory for some nonlinear elliptic equations
نویسندگان
چکیده
منابع مشابه
Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
bifurcation problem for biharmonic asymptotically linear elliptic equations
in this paper, we investigate the existence of positive solutions for the ellipticequation $delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $omega$ of $r^{n}$, $ngeq2$, with navier boundary conditions. we show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملSome nonlinear elliptic equations from geometry.
We describe some recent work on certain nonlinear elliptic equations from geometry. These include the problem of prescribing scalar curvature on (n), the Yamabe problem on manifolds with boundary, and the best Sobolev inequality on Riemannian manifolds.
متن کاملNonexistence of Positive Solutions for Some Fully Nonlinear Elliptic Equations
denote the kth elementary symmetric function, and let Γk denote the connected component of {λ ∈ R : σk(λ) > 0} containing the positive cone {λ ∈ R : λ1 > 0, · · · , λn > 0}. It is well known that Γk = {λ ∈ R : σl(λ) > 0, 1 ≤ l ≤ k}. Let S denote the set of n× n real symmetric matrices. For any A ∈ S we denote by λ(A) the eigenvalues of A. Throughout this note we will assume that Γ ⊂ R is an ope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2003
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm95-1-12